
library-combo(7) GNUstepSystem Manual library-combo(7)

DESCRIPTION
This manual page is about cross-compilation and fat binaries. Fat binaries are packeges that you can supply
which contains more the one binary of your e.g. application. So you can support multiple platforms with a
single package.

To support this your system has to be built in a non-flattened way. Meaning that during the installation of
gnustep-makeyou should have selected−−disable-flattenedand the types of library combinations you
want to support, through the−−with-library-combo option. With library combinations we mean the Objec-
tive-C runtime, the Foundation library and the Application library. For more details about this see the
LIBRARY-COMBO section.

If you installed yourGNUstepsystem in a non-flattened way all system dependend binaries are installed in
subdirectories withcpu/os/library-comboinformation. That means for instance that thegnustep-base
library will be installed inLibrary/Libraries/ix86/linux/gnu−gnu−gnu/when you are on an Intel x86 sys-
tem, running linux with theGNU runtime for Objective-C and you installedGNUstep.

For each and every library-combo that you want to support you should create the environment through
gnustep-make, because it installs a differentconfig.maketo support its ownCC, OPTFLAGS, etc. flags.

LIBRAR Y-COMBO
An important issue is to let to a package the ability to deal with various libraries and configurations avail-
able now:

Objective-C runtimes
In the Objective-C world there are three major runtimes: the NeXT runtime, the Apple runtime
and theGNU runtime (both with and without garbage collection enabled). They are different in
several respects and a program or library that works at the runtime level should be aware of them.

Foundation libraries
There are several Foundation libraries an application or tool can be written on top of: NeXT Foun-
dation library which runs on NeXTStep/OPENSTEP systems, gnustep-base, libFoundation and
Apple Cocoa system.

Graphical interfaces
Until now three libraries provide or try to provide OpenStep compliant systems: the AppKit from
NeXT, gnustep-gui and Cocoa from Apple.

If a program wants to work with all the possible combinations it will have to provide different binaries for
each combination because it’s not possible to have a tool compiled for NeXT Foundation that runs with
gnustep-base or vice-versa. To summarize, a program can be compiled for these combinations:

Objective-C runtime
nx (for NeXT), gnu (forGNU without garbage collection), gnugc (forGNU with garbage collec-
tion), apple (for Apple)

Foundation library
nx (for NeXT), gnu (for gnustep-base), fd (for libFoundation), apple (for Apple Cocoa)

GUI library
nx (for NeXT), gnu (for gnustep-gui), apple (for Apple Cocoa)

We’l l denote the fact that an application was compiled for a certain combination of the above values by
using the abbreviations of the different subsystems and placing dashes between them. For example an appli-
cation compiled for NeXT Foundation using NeXT AppKit will have the compile attribute nx−nx−nx. An
application compiled for Apple Cocoa with theGNU compiler for Objective-C gnu−apple−apple and
another one compiled forgnustep-baseusing gnustep-guiunder Unix will be denoted by gnu−gnu−gnu.
Here is a list of some of the possible combinations:

Runtime Foundation GUI
nx nx nx
nx fd gnu
gnu gnu gnu

gnustep-make 20/12/2007 1



library-combo(7) GNUstepSystem Manual library-combo(7)

gnu fd gnu
gnu apple apple
gnugc gnu gnu
gnugc fd gnu
gnugc apple apple
apple apple apple
apple gnu gnu

Note that one can choose his/her own packages to build; it is not required to have all the packages installed
on the system. Not having all of them installed limits only the ability to build and distribute binaries for
those missing combinations.

DIRECTORY STRUCTURE
For cross-compilation in a non-flattened directory structure is recommended, so that you can store on the
same directory structure binaries for different machines.The standardGNUstep filesystem layout is nor-
mally used when a non-flattened directory structure is being used; this is obtained with the−−with-lay-
out=gnustepoption when configuringgnustep-make. The entireGNUstep installation is then created
inside /usr/GNUstep(or another directory if you use the−−prefix=... option when configuringgnustep-
make). Directoriesthat contain binaries (such as theLibraries directory) inside/usr/GNUstepare then set
up to support fat binaries as follows:

Libraries/
ix86/
linux−gnu/
gnu−gnu−gnu/

libgnustep−base.so
libgnustep−gui.so

gnu−fd−gnu/
libFoundation.so
libgnustep−gui.so

To allow the right libraries to be found, you need to sourceGNUstep.shbefore usingGNUstep, and you
need to start up your application by usingopenapp, which will locate the right binary for your library
combo.

BUILDING FOR A LIBRAR Y-COMBO
The makefile package will allow the user to choose between different library combinations. To specify a
combination you want to compile for just type:

$ make library_combo=library-combo

For instance if you want to choose to compile using the GNUstep’s Foundation implementation and use the
GNUstep GUI library on a GNU/Linux machine you can do like this:

$ make library_combo=gnu−gnu−gnu

If your project requires running configure before compiling there are two issues you have to keep in mind.
’configure’ is used to determine the existence of particular header files and/or of some specific functionality
in the system header files. This thing is usually done by creating a config.h file which contains a couple of
defines like HAVE_... which say if the checked functionality is present or not.

Another usage of configure is to determine some specific libraries to link against to and/or some specific
tools. A typicalGNUstepprogram is not required to check for additional libraries because this step is done
by the time the makefile package is installed. If the project still needs to check for additional libraries
and/or tools, the recommended way is to output aconfig.makfile which is included by the mainGNUmake-
file, instead of usingMakefile.infiles which are modified byconfigure. The reason for not doing this is to
avoid having the makefiles contain target dependencies like above, this way keeping only one makefile
instead of several for each target machine.

The makefile package is written forGNU make because it provides some very powerful features that save

gnustep-make 20/12/2007 2



library-combo(7) GNUstepSystem Manual library-combo(7)

time both in writing the package but also at runtime, when you compile a project.

BUILDING FOR AN ARCHITECTURE
In order to build a project for multiple architectures you’ll need the development environment for the target
machine installed on your machine. This includes a cross-compiler together with all the additional tools
like the assembler and linker, the target header files and all the libraries you need.

TheGNUstepmakefile package should be able to compile and link an application for another machine just
by typing

$ make target=target-triplet

where target-triplet is the canonical system name as reported byconfig.guess.

USING A LIBRAR Y-COMBO
When you use library-combos, you must always sourceGNUstep.sh. That allows you to switch library
paths on the fly. If you want to switch to a different library-combo in your shell, and if you are usingbash,
it’ s common to first sourceGNUstep-reset.shto reset all shell variables, then to sourceGNUstep.shagain.
Let’s assume we use gnu-gnu-gnu as our currentLIBRARY_COMBO and we want to switch to
gnugc−gnu−gnu, then we would use:

. /usr/GNUstep/System/Library/Makefiles/GNUstep-reset.sh
export LIBRARY_COMBO=gnugc−gnu−gnu
. /usr/GNUstep/System/Library/Makefiles/GNUstep.sh

SEE ALSO
debugapp(1), GNUstep(7), gnustep-config(1), openapp(1)

HISTORY
Work on gnustep-make started in 1997 by Scott Christley <scottc@net-community.com>.

Version 2.0.0 of gnustep-make introduced many changes with previous releases, which was mainly the
work of Nicola Pero <nicola.pero@meta-innovation.com>

AUTHORS
This man-page was written by Dennis Leeuw <dleeuw@made-it.com> based on the DESIGN document
from the gnustep-make source tree.

CREDITS
The DESIGN document was written by Ovidiu Predescu.

This work could only be as is due to the notes and corrects from Nicola Pero <nicola.pero@meta-inno-
vation.com>.

COPYRIGHT
Copyright (C) 2007 Free Software Foundation, Inc.

Copying and distribution of this file, with or without modification, are permitted in any medium without
royalty provided the copyright notice and this notice are preserved.

gnustep-make 20/12/2007 3


